MA 114 MathExcel Worksheet J

1 Center of Mass

1. Conceptual Understanding:
(a) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between $x=a, x=b, f(x)$, and $g(x)$ as in the figure to the right.
(b) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between $y=c, y=d, f(y)$, and $g(y)$ as in the figure to the right.

2. Find the centroid of the region between $f(x)=x^{3}$ and $g(x)=\sqrt{x}$.
3. Find the moments and center of mass of the lamina of uniform density ρ occupying the region under $y=x^{2}$ for $0 \leq x \leq 3$.
4. Find the center of mass for the system of particles of masses $6,1,11$, and 1 located at the coordinates $(10,2),(-3,2),(2,-11)$, and $(4,4)$, respectively.
5. Find the center of mass of the region created by an isosceles triangle with vertices $(2,3),(-2,3),(0,5)$ on top of the rectangle created by the points $(2,0),(-2,0),(2,3),(-2,3)$.

2 Parametric Curves

6. Consider the parametric curve: $c(t)=\left(\cos (2 t), \sin ^{2}(t)\right)$ for $0 \leq t \leq 2 \pi$. Find the (x, y) coordinates at times $t=0, \frac{\pi}{4}, \pi$.
7. Find a Cartesian equation for each of the following parametric curves. It may be useful to eliminate the parameter.
(a) $x=t^{2}, y=t^{3}+1, t \in \mathbb{R}$
(c) $x=\cos (t), y=\tan (t), 0 \leq t \leq 2 \pi$. Try to express your answer without trigonometric functions.
8. Graph the following parametric curves; draw an arrow on each curve to specify the direction corresponding to the motion.
(a) $x=2 t, y=t^{2},-\infty<t<\infty$
(b) $x=\frac{t}{\pi}, y=\sin (t)$ for $0 \leq t \leq 2 \pi$
9. Find parametrizations of the following curves satisfying the given conditions.
(a) $y=x^{2}, c(0)=(3,9)$
(b) $x^{2}+y^{2}=4, c(0)=(1, \sqrt{3})$
10. Recall that the derivative of a parametric curve $c(t)=(x(t), y(t))$ is given by

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

For each of the following curves, find $\frac{d y}{d x}$ in two ways. First use the formula above. Then check your work by finding $y=f(x)$ and then differentiating it.
(a) $c(t)=(2 t+1,1-9 t), \quad t \in \mathbb{R}$.
(b) $c(s)=\left(\frac{s}{2}, \frac{s^{2}}{4}-s\right), \quad s \in \mathbb{R}$.
(c) $x=\cos (\theta), y=\cos (\theta)+\sin ^{2}(\theta), \quad 0 \leq \theta \leq 2 \pi$.
11. For the following parametric curves, find an equation for the tangent line to the curve at the specified value of the parameter.
(a) $x=\ln (t), y=1+t^{2}$ at $t=1$.
(b) $x=\sec (t), y=\cot ^{2}(t)-\cos (t)$ at $t=\frac{\pi}{4}$
12. Recall that the second derivative of a parametric function $c(t)=(x(t), y(t))$ is given by

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

Find $\frac{d^{2} y}{d x^{2}}$ for the curve $x=t+\sin (t), y=t-\cos (t), t \in(-\infty, \infty)$.

